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Abstract
We focus on the study of degree correlations of the group preferential model, in
which a link is established with a pre-existing vertex according to an attachment
probability which depends on the degree of the m targeted vertices of the new
vertex. By using the rate equation approach, we have obtained asymptotic
expressions for two vertex and three vertex degree correlations. Finally, all
analytical solutions are successfully contrasted with computer simulations.

PACS numbers: 89.75.Hc, 05.70.Ln, 87.23.Ge, 89.75.Da

1. Introduction

The last decade has witnessed the birth of a new movement of interest and research in the study
of complex networks, i.e. networks whose structure is irregular, complex and dynamically
evolving in time, with the main focus moving from the analysis of small networks to that of
systems with thousands or millions of nodes, and with a renewed attention to the properties
of networks of dynamical units (see [1–6], and references therein).

The distribution of degrees p(k) was the first feature for which network models were
developed. Plenty of models were proposed for generating the so-called scale-free networks,
webs of interactions whose degree distribution approximates a power law, p(k) ∼ k−γ . It
completely determines the statistical properties of uncorrelated networks.

However, a large number of real networks are correlated in the sense that a node of degree
k is connected to another node of degree, say k′, depend on k. This is the case, for instance, in
many social networks [7], the degree correlations are positive, and nodes with a high degree
tend to connect to each other. Conversely, in protein interaction networks [8, 9], or the Internet
[10], the degree correlations are negative, highly connected nodes avoid linking directly to
each other and instead connect to low-degree ones. Hence, in these cases, it is necessary to
introduce the conditional probability P(k′|k), being defined as the probability that a link from
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a node of degree k points to a node of degree k′. Although the degree correlations are formally
characterized by P(k′|k), the direct evaluation of the conditional probability gives extremely
noisy results for most of the real networks because of their finite size N. This problem can be
overcome by defining the average nearest neighbors degree of a node i as

knn,i = 1

ki

∑
j∈Ni

kj , (1)

where the sum runs on the nodes belonging to Ni , the set of first neighbors of i. By using
the definition (1), one can calculate the average degree of the nearest neighbors of nodes
with degree k, denoted as knn(k), obtaining an expression that implicitly incorporates the
dependence on k [11].

Analogously to two vertex correlations, correlations implying three vertices can be
measured by means of the probability P(k′, k′′|k) that a vertex of degree k is simultaneously
connected to vertices of degree k′ and k′′. Again, the difficulties in directly estimating this
conditional probability can be overcome by analyzing the clustering coefficient. The average
clustering coefficient of the vertices of degree k (the clustering spectrum), c̄(k), can be formally
computed as the probability that a vertex of degree k is connected to vertices of degree k′ and
k′′, and those two vertices are at the same time joined by an edge, averaged over all the possible
values of k′ and k′′.

Recent studies have focused on a more detailed topological characterization of the
degree correlations among vertices. Barrat and Pastor-Satorras [12] proposed a rate equation
approach to compute two vertex correlations in scale-free growing network models based on
the preferential attachment mechanism. They studied the properties of both two and three
vertex correlations for linear preferential attachment models and also for a model yielding a
large clustering coefficient. Later, Garcia-Domingoa et al [13] studied the degree distribution
and the two-node degree correlations in growing networks generated via a general linear
preferential attachment of new nodes together with a uniformly random deletion of nodes by
using a continuum approach.

Kong et al [14] newly introduced a new idea and proposed a group preferential model
which takes the m targeted edges of a new node as a unity. By using the Markov chain theory,
we prove that the group preferential model is of scale free, and a explicit analytical formula
for the degree distribution is provided.

For a deeper understanding of the structure and function of the group preferential model,
in this paper, we further offer a complete study of the two-node degree correlation and
three-node degree correlation. The remainder of the paper is organized as follows. In
section 2, we first recall the model and gain the expression of degree ki(t) by using the mean-
field approach. In sections 3 and 4, the two vertex and three vertex degree correlations are
calculated, respectively. Finally, the analytical results are checked by numerical simulations in
section 5.

2. Preliminaries

In this section, we will introduce some notations, the model and the expressions of degree
distribution.

Let us introduce some notations. In a network Gt = {−n0 + 1, . . . ,−1, 0} ∪ {1, 2,

3, . . . , t}, denote the total number of vertices and the total degree by nt and Nt , respectively.
We name each new vertex by the time it enters the network and call a combination of any m
vertices (i1, i2, . . . , im) in the existing network a group, denoted by g(i1, i2, . . . , im).
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2.1. The model

In the following, we recall the exact description of the model discussed in this paper. Group
preferential model (GP model)

(i) Initial condition: start with a small number of n0 nodes with total degree N0 and denote
the n0 initial nodes as {−n0 + 1, . . . ,−1, 0}.

(ii) Growth: at each time step, add a new node with m(1 � m � n0) new edges that connect
the new node to m different old vertices (i1, i2, . . . , im) with preferential attachment
probability �(ki1 , ki2 , . . . , kim). In particular, the rule for a new node to choose its m
targeted vertices is as follows: first, compute the number of possible groups of Gt ,
namely the number of possible m-element combinations of Gt . Then, choose a group and
make connections with each node in it. The probability that a new node points to a group
is proportional to the sum of the node degree in that group.

Hence, from the model description above, a graph Gt can be separated into Cm
nt

groups. And the
probability �

(
ki1 , ki2 , . . . , kim

)
(t) that a new vertices t +1 connects to a group g(i1, i2, . . . , im),

is

�
(
ki1 , ki2 , . . . , kim

)
(t) = ki1(t) + ki2(t) + · · · + kim(t)

Cm−1
nt−1Nt

. (2)

The denominator on the right-hand side of equation (2) is the total degree of nodes in the sample
space. And the sample space here accounts for all the possible m-element combinations in
graph Gt , which relates to the set of all possible outcomes in classical sense.

Remark. In the GP model, each new node t takes the existing network as
(nt−1

m

)
possible

groups, then chooses one to make connections among the elements in it. Additionally, the
probability for a new node to establish connection with an old one is proportional to the sum
of the degree of its m targeted vertices, not just the single one as in common cases, which will
ultimately improve the attachment probability for low-degree nodes.

For a vertex i, let �(ki(t)) denote the probability that it receives an edge from a new
vertex t + 1. Note that it is equal to the total attachment probability of groups which include
node i, then we have

�(ki(t)) =
∑

i1<···<im−1∈{1,2,...,nt }/{i}
�

(
ki, ki1 , ki2 , . . . , kim−1

)
(t).

Following the knowledge of combination, ki and each kis (is ∈ Gt/{i}) are computed repeatedly
Cm−1

nt−1 and Cm−2
nt−2 times, respectively, one can derive that

�(ki(t)) = Cm−1
nt−1ki(t) + Cm−2

nt−2

∑
j �=i kj (t)

Cm−1
nt−1Nt

= nt − m

nt − 1

ki(t)

Nt

+
m − 1

nt − 1
.

Hence, we can get easily

�(ki(t)) = n0 + t − m

n0 + t − 1

ki(t)

2mt + N0
+

m − 1

n0 + t − 1

� ki(t)

2mt
+

m − 1

t
. (3)

For large values of t, we also approximate that

nt � t, Nt � 2mt.
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2.2. Degree distribution

From the evolution rules (i), (ii) and equation (3), one gets that the degree evolution is governed
by the following rate equation:

∂ki(t)

∂t
= ki(t)

2mt
+

m − 1

t
, (4)

with the initial condition ki(i) = m. Integrating equation (4), one obtains

ki(t) = m(2m − 1)

(
t

i

)β

− 2m(m − 1), (5)

where β = 1
2m

.
Therefore, this model yields networks with a power-law degree distribution of the form

P(k) = 2m(2m2 − m)2m+1(k + 2m(m − 1))−(2m+1) (6)

∼ k−γ , γ = 2m + 1, for large k. (7)

In the following two sections, we turn to discuss the two vertex and three vertex degree
correlations by the rate equation approach.

3. Two vertex degree correlations

In this section, we will start by following the rate equation approach for obtaining an analytical
expression for two vertex degree correlations in the GP model.

The average degree of the nearest neighbors of a node s at time t, k̄nn(s, t), is a function
of its degree, ks(t). By definition,

k̄nn(s, t) = Rs(t)/ks(t),

where Rs(t) is the sum of the degrees of the neighbors of the node s at time t. That is,
Rs(t) = ∑

j∈v(s) kj (t), where v(s) denotes the neighbors of s.
From the expression for k̄nn(s, t), we need to obtain previously the time evolution of two

important features of the network, namely, Rs(t) and the variance of the degree distribution.
Consider a fixed node s. Let us derive a difference equation for the time evolution of Rs .

The entering node attaches to s with probability �(ks), and in this case Rs increases by m.
This new node attaches to a neighbor of s with probability

∑
j∈v(s) �(kj ). As usual, we will

not consider the fact that the entering node attaches simultaneously to s and to one or several
neighbors of s, since the probability for this event is negligible when the size of the network
is large. Summarizing, we get the following rate equation for the evolution of Rs(t):

dRs(t)

dt
= m�(ks(t)) +

∑
j∈v(s)

�(kj (t))

= Rs(t)

2mt
+

2m − 1

2t
ks(t) +

m(m − 1)

t

= Rs(t)

2mt
+

m(2m − 1)2

2t

(
t

s

)β−1

− 2m(m − 1)2

t
.

The general solution of the previous equation is

Rs(t) = f0(s)t
β + β[m(2m − 1)]2

(
t

s

)β

lnt + [2m(m − 1)]2. (8)
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where f0(s) is given by the boundary condition Rs(s), that is

Rs(s) =
s∑

j=1

�(kj (s))[kj (s) + 1] =
∑s

j=1 k2
j (s)

2ms
+ m(2m − 1).

Plugging ki(t) = m(2m − 1)
(

t
i

)β − 2m(m − 1) into Rs(s) results in

Rs(s) = m[1 − 2m(m − 1)] + β[m(2m − 1)]2s2β−1
s∑

j=1

j−2β. (9)

The summation in equation (9),
∑s

j=1 j−2β � s1−2β/(1 − 2β), is convergent, and therefore
Rs(s) becomes independent of s. This leads to

Rs(t) � β[m(2m − 1)]2

(
t

s

)β

ln

(
t

s

)

+

(
m[1 − 2m(m − 1)] +

β[m(2m − 1)]2

1 − 2β
− (2m(m − 1))2

)(
t

s

)β

(10)

and finally the dominant behavior for the correlation function is

k̄nn(k,N) � 2m − 1

2
ln

(
k

m(2m − 1)

)
. (11)

In this case, k̄nn(k,N) is independent of the network size and increases logarithmically with
k. The group preferential attachment yields networks with assortative degree correlations.

4. Three vertex degree correlations

Recall that the clustering coefficient cs(t) of vertex s at time t is defined as the ratio between
the number of edges, the neighbors of s and its maximum possible value. Then, if Ms(t) is
the number of connections between the neighbors of s at time t, we have that

cs(t) = 2Ms(t)

ks(t)(ks(t) − 1)
. (12)

During the growth of the network, Ms(t) can only increase by the simultaneous addition of an
edge to s and one of its neighbors. Let �(ks(t), ki(t)) be the probability that vertices s and i
are connected simultaneously by a node. Similarly, it equals the total attachment probability
of groups which include nodes s and i, then we have

�(ks(t), ki(t)) =
∑

i1<···<im−1∈{1,2,...,nt }/{s,i}
�

(
ks, ki, ki1 , ki2 , . . . , kim−2

)
(t).

Following the knowledge of combination, ks, ki and each kis (is ∈ Gt/{s, i}) are computed
repeatedly Cm−2

nt−2 and Cm−3
nt−3 times, respectively, one can derive that

�(ks(t), ki(t)) = Cm−2
nt−2(ks(t) + ki(t)) + Cm−3

nt−3

∑
j �=s,i kj (t)

Cm−1
nt−1Nt

= m − 1

(t − 1)(t − 2)

(
m − 2 +

t − m

2mt
(ks(t) + ki(t))

)
. (13)

Hence, the probability of the simultaneous addition of an edge to s and one of its neighbors is∑
i∈v(s)

�(ks(t), ki(t)) = m − 1

(t − 1)(t − 2)

(
(m − 2)ks(t) +

t − m

2mt

(
k2
s (t) + Rs(t)

))

� m − 1

t2

(
(m − 2)ks(t) +

1

2m

(
k2
s (t) + Rs(t)

))
. (14)

5



J. Phys. A: Math. Theor. 42 (2009) 275002 J Tong et al

Therefore, in the continuous k approximation, we can write down the following rate
equation:

dMs(t)

dt
= m − 1

t2

(
(m − 2)ks(t) +

1

2m

(
k2
s (t) + Rs(t)

))
. (15)

In order to solve this equation, we approximate ks(t) and Rs(t) by their dominant terms
for large t and s,

ks(t) � m(2m − 1)

(
t

s

)β

, Rs(t) � β[m + 2m(m − 1)]2

(
t

s

)β

ln

(
t

s

)
,

yielding

Ms(t) = (m − 1)

(
(m − 2)m(2m − 1)

β − 1
s−β(tβ−1 − sβ−1)

+
m(2m − 1)2

2(β − 1)
s−β

[
tβ−1ln

(
t

s

)
− 1

β − 1
(tβ−1 − sβ−1)

]

+
m(2m − 1)2

2(2β − 1)
s−2β(t2β−1 − s2β−1)

)
+ Ms(s). (16)

Next, we turn to compute the boundary condition Ms(s). To do so, we observe that Ms(t)

is the number of triangles created by the introduction of vertex s. Therefore

Ms(s) = 1

2

∑
j,n

�(kj (s), kn(s))�j,n, (17)

that is, it is proportional to the probability that s is connected to vertices j and n, times the
probability �j,n that j and n are linked, averaged over all vertices j and n existing in the
network at time s. The probability �j,n is given by

�j,n = �(j − n)�(kn(j)) + �(n − j)�(kj (n)),

where �(x) is the Heaviside step function.
The boundary condition Ms(s) can be written as

Ms(s) � 1

2

∑
j,n

m − 1

s2

(
1

2m
(kj (s) + kn(s))

)

× (�(j − n)�(kn(j)) + �(n − j)�(kj (n)))

= (m − 1)(2m − 1)2

8
sβ−2

⎛
⎝ s∑

n=1

n−β

s∑
j=n+1

j−1 +
s∑

n=1

n−2β

s∑
j=n+1

jβ−1

+
s∑

j=1

j−2β

s∑
n=j+1

nβ−1 +
s∑

j=1

j−β

s∑
n=j+1

n−1

⎞
⎠

= (m − 1)(2m − 1)2

4
sβ−2

⎛
⎝ s∑

n=1

n−β

s∑
j=n+1

j−1 +
s∑

n=1

n−2β

s∑
j=n+1

jβ−1

⎞
⎠ . (18)

We observe that the double summations in equation (18) take the forms at large s, respectively,
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(a) (b)

(c)

Figure 1. Comparison between simulation and analytic results for degree distributions with system
sizes t = 300,m = 3 and t = 1000, 2000,m = 2 in logarithmic scales. Symbols correspond
to the different system sizes t = 300 (*), 1000 (◦), 2000 (	). (a) t = 300,m = 3; (b) and
(c) t = 1000, 2000,m = 2, respectively. The solid lines correspond to the theoretical value
(equation (6)), representing a power-law decay with exponent −(2m + 1).

�1 =
s∑

n=1

n−β

s∑
j=n+1

j−1 �
s∑

n=1

n−β(lns − lnn) � s1−β

(1 − β)2
, (19)

�2 =
s∑

n=1

n−2β

s∑
j=n+1

jβ−1 �
s∑

n=1

n−2ββ−1(sβ − nβ) = β−1[ζ(2β)sβ − ζ(β)]. (20)

Solving the equation for Ms(t) with the boundary condition (equation (17)), thus we obtain

Ms(t) = (m − 1)

(
(m − 2)m(2m − 1)

β − 1
s−β(tβ−1 − sβ−1)

+
m(2m − 1)2

2(β − 1)
s−β

[
tβ−1ln

(
t

s

)
− 1

β − 1
(tβ−1 − sβ−1)

]

+
m(2m − 1)2

2(2β − 1)
s−2β(t2β−1 − s2β−1)

)

+
(m − 1)(2m − 1)2

4
sβ−2β−1

(
βs1−β

(1 − β)2
+ ζ(2β)sβ − ζ(β)

)
. (21)
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20

k
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n
(k

,N
)

m=2, t=2000

Figure 2. Average degree for the nearest neighbors of the nodes of degree k, k̄nn(k, N), for the
GP model with system sizes t = 300,m = 3 and t = 1000, 2000,m = 2. The solid lines
correspond to the theoretical value (equation (11)) and symbols correspond to the different system
sizes t = 300 (*), 1000 (◦), 2000 (	). Top plots: t = 300,m = 3. Middle and bottom plots:
t = 1000, 2000,m = 2, respectively.

Since in growing network models in the continuous k approximation the degree at time
t is uniquely determined by the introduction time s, from cs(t) we can directly obtain the
clustering spectrum c̄(k,N) as a function of k and the largest time t = N .

Hence, in order to express explicitly the dependence of cs(t) on the vertex degree, we
write s in terms of k and N, that is

c̄(k,N) � (m − 1)(2m − 1)2[m(2m − 1)]2− 2
β

4
β−1ζ(2β)k

2
β
−2

N2β−2. (22)

Therefore, we obtain that the average clustering of the vertices of the degree k is a growing

function of k, scaling as c̄(k,N) ∼ k
2
β
−4

N2β−2. Since by definition the clustering must be
smaller than 1, this growing behavior must be restricted to degree values k � Nβ .

5. Numerical simulation

In order to check the analytical results obtained in this paper, we have performed extensive
numerical simulations of the GP model, such as the degree distribution, the degree correlation
and the clustering coefficient. Simulations of the model consistently confirm the analytical
results obtained in the previous sections.

Figure 1 displays the results of the numerical exploration of degree distribution, which
shows that the data follow the predicted scaling P(k) ∼ k−(2m+1) as the network increases.

In figure 2, the numerical explorations correspond to the average degree of the nearest
neighbors as a function of the degree, k̄nn(k,N). We observe that, as the size of the network
increases, the data follow the predicted function independent of the network size, and slowly
(logarithmically) growing with the degree k, consequently assortative by degree.

Finally, in figure 3 we show the numerical exploration of the clustering spectrum as a
function of node degree for different system sizes. The solid lines correspond to the theoretical

8
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1 2 3 4 5 6 7 8 9

0

50

k

c̄(
k

,N
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t=3000

0

50
c̄(
k

,N
)

t=2000

0

50

50

50

50

c̄(
k

,N
)

t=1000

Figure 3. Comparison between simulation and analytic results for clustering spectrum c̄(k, N)

for the GP model with system sizes t = 1000, 2000, 3000,m = 2 in logarithmic scales. The
simulation data are rescaled by the size prefactor N2−2β . The solid lines correspond to the
theoretical value (equation (22)) and symbols correspond to the different system sizes t =
1000 (*), 2000 (◦), 3000 (	).

value (equation (22)). The simulation data are rescaled by the size prefactor N2−2β , showing
the dependence with the system size, due to the finite size effect.

6. Conclusion

The GP model considered in this paper has introduced a new idea in the research of the
complex network, which takes the existing network as many groups (each with size m). And
in this paper, we have shown that it is scale free and further discussed its degree correlations.

Based on the rate equation in the continuous k approximation, together with appropriate
boundary conditions, we have obtained asymptotic expressions for the two vertex degree
correlation k̄nn(k,N) and the three vertex degree correlation c̄(k,N). In particular, the two
vertex correlations here is expressed by means of the average degree of the nearest neighbors
of the vertices of degree k, k̄nn(k,N). Additionally, we have presented a more complete
description of the rate equation determining the cluster spectrum c̄(k,N). Furthermore, as
shown in figures 1–3, we can observe that there is an overall good agreement between simulated
data and theoretical results, including the degree distribution, the degree correlation and the
clustering spectrum.
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